Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Characterization of antibiotic resistance genes (ARGs) from high-throughput sequencing data of metagenomics and cultured bacterial samples is a challenging task, with the need to account for both computational (e.g., string algorithms) and biological (e.g., gene transfers, rearrangements) aspects. Curated ARG databases exist together with assorted ARG classification approaches (e.g., database alignment, machine learning). Besides ARGs that naturally occur in bacterial strains or are acquired through mobile elements, there are chromosomal genes that can render a bacterium resistant to antibiotics through point mutations, i.e., ARG variants (ARGVs). While ARG repositories also collect ARGVs, there are only a few tools that are able to identify ARGVs from metagenomics and high throughput sequencing data, with a number of limitations (e.g., pre-assembly,a posterioriverification of mutations, or specification of species). In this work we present thek-mer, i.e., strings of fixed lengthk, ARGV analyzer – KARGVA – an open-source, multi-platform tool that provides: (i) anad hoc, large ARGV database derived from multiple sources; (ii) input capability for various types of high-throughput sequencing data; (iii) a three-way, hash-based,k-mer search setup to process data efficiently, linkingk-mers to ARGVs,k-mers to point mutations, and ARGVs tok-mers, respectively; (iv) a statistical filter on sequence classification to reduce type I and II errors. On semi-synthetic data, KARGVA provides very high accuracy even in presence of high sequencing errors or mutations (99.2 and 86.6% accuracy within 1 and 5% base change rates, respectively), and genome rearrangements (98.2% accuracy), with robust performance onad hocfalse positive sets. On data from the worldwide MetaSUB consortium, comprising 3,700+ metagenomics experiments, KARGVA identifies more ARGVs than Resistance Gene Identifier (4.8x) and PointFinder (6.8x), yet all predictions are below the expected false positive estimates. The prevalence of ARGVs is correlated to ARGs but ecological characteristics do not explain well ARGV variance. KARGVA is publicly available athttps://github.com/DataIntellSystLab/KARGVAunder MIT license.more » « less
- 
            Abstract Biological and biomedical research is increasingly conducted in large, interdisciplinary collaborations to address problems with significant societal impact, such as reducing antibiotic resistance, identifying disease sub-types, and identifying genes that control for drought tolerance in plants. Many of these projects are data driven and involve the collection and analysis of biological data at a large-scale. As a result, life-science projects, which are frequently diverse, large and geographically dispersed, have created unique challenges for collaboration and training. We examine the communication and collaboration challenges in multidisciplinary research through an interview study with 20 life-science researchers. Our results show that both the inclusion of multiple disciplines and differences in work culture influence collaboration in life science. Using these results, we discuss opportunities and implications for designing solutions to better support collaborative tasks and workflows of life scientists. In particular, we show that life science research is increasingly conducted in large, multi-institutional collaborations, and these large groups rely on “mutual respect” and collaboration. However, we found that the interdisciplinary nature of these projects cause technical language barriers and differences in methodology affect trust. We use these findings to guide our recommendations for technology to support life science. We also present recommendations for life science research training programs and note the necessity for incorporating training in project management, multiple language, and discipline culture.more » « less
- 
            Abstract Background Metagenomic data can be used to profile high-importance genes within microbiomes. However, current metagenomic workflows produce data that suffer from low sensitivity and an inability to accurately reconstruct partial or full genomes, particularly those in low abundance. These limitations preclude colocalization analysis, i.e., characterizing the genomic context of genes and functions within a metagenomic sample. Genomic context is especially crucial for functions associated with horizontal gene transfer (HGT) via mobile genetic elements (MGEs), for example antimicrobial resistance (AMR). To overcome this current limitation of metagenomics, we present a method for comprehensive and accurate reconstruction of antimicrobial resistance genes (ARGs) and MGEs from metagenomic DNA, termed t arget- e nriched l ong-read seq uencing (TELSeq). Results Using technical replicates of diverse sample types, we compared TELSeq performance to that of non-enriched PacBio and short-read Illumina sequencing. TELSeq achieved much higher ARG recovery (>1,000-fold) and sensitivity than the other methods across diverse metagenomes, revealing an extensive resistome profile comprising many low-abundance ARGs, including some with public health importance. Using the long reads generated by TELSeq, we identified numerous MGEs and cargo genes flanking the low-abundance ARGs, indicating that these ARGs could be transferred across bacterial taxa via HGT. Conclusions TELSeq can provide a nuanced view of the genomic context of microbial resistomes and thus has wide-ranging applications in public, animal, and human health, as well as environmental surveillance and monitoring of AMR. Thus, this technique represents a fundamental advancement for microbiome research and application.more » « less
- 
            Abstract Antimicrobial resistance (AMR) is considered a critical threat to public health, and genomic/metagenomic investigations featuring high-throughput analysis of sequence data are increasingly common and important. We previously introduced MEGARes, a comprehensive AMR database with an acyclic hierarchical annotation structure that facilitates high-throughput computational analysis, as well as AMR++, a customized bioinformatic pipeline specifically designed to use MEGARes in high-throughput analysis for characterizing AMR genes (ARGs) in metagenomic sequence data. Here, we present MEGARes v3.0, a comprehensive database of published ARG sequences for antimicrobial drugs, biocides, and metals, and AMR++ v3.0, an update to our customized bioinformatic pipeline for high-throughput analysis of metagenomic data (available at MEGLab.org). Database annotations have been expanded to include information regarding specific genomic locations for single-nucleotide polymorphisms (SNPs) and insertions and/or deletions (indels) when required by specific ARGs for resistance expression, and the updated AMR++ pipeline uses this information to check for presence of resistance-conferring genetic variants in metagenomic sequenced reads. This new information encompasses 337 ARGs, whose resistance-conferring variants could not previously be confirmed in such a manner. In MEGARes 3.0, the nodes of the acyclic hierarchical ontology include 4 antimicrobial compound types, 59 resistance classes, 233 mechanisms and 1448 gene groups that classify the 8733 accessions.more » « less
- 
            Abstract Antimicrobial resistance (AMR) is a growing threat to public health and farming at large. In clinical and veterinary practice, timely characterization of the antibiotic susceptibility profile of bacterial infections is a crucial step in optimizing treatment. High-throughput sequencing is a promising option for clinical point-of-care and ecological surveillance, opening the opportunity to develop genotyping-based AMR determination as a possibly faster alternative to phenotypic testing. In the present work, we compare the performance of state-of-the-art methods for detection of AMR using high-throughput sequencing data from clinical settings. We consider five computational approaches based on alignment (AMRPlusPlus), deep learning (DeepARG), k-mer genomic signatures (KARGA, ResFinder) or hidden Markov models (Meta-MARC). We use an extensive collection of 585 isolates with available AMR resistance profiles determined by phenotypic tests across nine antibiotic classes. We show how the prediction landscape of AMR classifiers is highly heterogeneous, with balanced accuracy varying from 0.40 to 0.92. Although some algorithms—ResFinder, KARGA and AMRPlusPlus—exhibit overall better balanced accuracy than others, the high per-AMR-class variance and related findings suggest that: (1) all algorithms might be subject to sampling bias both in data repositories used for training and experimental/clinical settings; and (2) a portion of clinical samples might contain uncharacterized AMR genes that the algorithms—mostly trained on known AMR genes—fail to generalize upon. These results lead us to formulate practical advice for software configuration and application, and give suggestions for future study designs to further develop AMR prediction tools from proof-of-concept to bedside.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
